Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1475568

ABSTRACT

Fire is a common ecosystem process in forests and grasslands worldwide. Increasingly, ignitions are controlled by human activities either through suppression of wildfires or intentional ignition of prescribed fires. The southeastern United States leads the nation in prescribed fire, burning ca. 80% of the country's extent annually. The COVID-19 pandemic radically changed human behavior as workplaces implemented social-distancing guidelines and provided an opportunity to evaluate relationships between humans and fire as fire management plans were postponed or cancelled. Using active fire data from satellite-based observations, we found that in the southeastern United States, COVID-19 led to a 21% reduction in fire activity compared to the 2003 to 2019 average. The reduction was more pronounced for federally managed lands, up to 41% below average compared to the past 20 y (38% below average compared to the past decade). Declines in fire activity were partly affected by an unusually wet February before the COVID-19 shutdown began in mid-March 2020. Despite the wet spring, the predicted number of active fire detections was still lower than expected, confirming a COVID-19 signal on ignitions. In addition, prescribed fire management statistics reported by US federal agencies confirmed the satellite observations and showed that, following the wet February and before the mid-March COVID-19 shutdown, cumulative burned area was approaching record highs across the region. With fire return intervals in the southeastern United States as frequent as 1 to 2 y, COVID-19 fire impacts will contribute to an increasing backlog in necessary fire management activities, affecting biodiversity and future fire danger.


Subject(s)
COVID-19/prevention & control , Pandemics , Physical Distancing , SARS-CoV-2 , Wildfires/prevention & control , Biodiversity , COVID-19/epidemiology , Droughts/statistics & numerical data , Ecosystem , Forests , Human Activities , Humans , Models, Statistical , Pandemics/prevention & control , Southeastern United States/epidemiology , Weather , Wildfires/statistics & numerical data
4.
Public Health Res Pract ; 30(4)2020 Dec 09.
Article in English | MEDLINE | ID: covidwho-969941

ABSTRACT

Mosquitoes and mosquito-borne disease are a normal part of the Australian summer but the 2019-2020 summer was anything but normal. Above average temperatures and below average rainfall resulted in drought across many parts of New South Wales (NSW), Australia, which then contributed to catastrophic bushfires. However, by late summer, above average rainfall resulted in a dramatic increase in mosquito abundance. While the coronavirus disease 2019 (COVID-19) pandemic unfolded, NSW experienced increased activity of mosquito-borne Ross River virus. All these extreme events created many challenges for managing the pest and the public health risks associated with mosquitoes, from maintenance of mosquito monitoring and control programs through to unique challenges of communicating mosquito bite prevention advice to local communities. There are important lessons to be learned in situations where extreme weather events may influence the risk of mosquito-borne disease through driving changes in the abundance and diversity of mosquito populations, while also influencing the abundance and distribution of native wildlife that represents important local reservoirs of arboviruses. Similarly, supporting the maintenance of mosquito monitoring and management programs while local authorities face competing priorities due to extreme natural disasters and/or public health events is critical.


Subject(s)
COVID-19/epidemiology , Mosquito Vectors/virology , Vector Borne Diseases/epidemiology , Wildfires/statistics & numerical data , Alphavirus Infections/epidemiology , Animals , Disasters , Humans , Mosquito Control , New South Wales/epidemiology , Pandemics , Public Health , Ross River virus , SARS-CoV-2 , Seasons , Vector Borne Diseases/virology , Weather
5.
Eur Rev Med Pharmacol Sci ; 24(19): 10286-10292, 2020 10.
Article in English | MEDLINE | ID: covidwho-890964

ABSTRACT

OBJECTIVE: The wildfire allied environmental pollution is highly toxic and can cause significant wide-ranging damage to the regional environment, weather conditions, and it can facilitate the transmission of microorganisms and diseases. The present study aims to investigate the effect of wildfire allied pollutants, particulate matter (PM-2.5 µm), and carbon monoxide (CO) on the dynamics of daily cases and deaths due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in San Francisco, USA. MATERIALS AND METHODS: For this study, we selected San Francisco, one of the regions affected by the wildfires allied pollution in California, USA. The data on the COVID-19 pandemic in San Francisco, including daily new cases and new deaths were recorded from Worldometer Web. The daily environmental pollutants particulate matter (PM-2.5 µm) and carbon monoxide (CO) were recorded from the metrological web "BAAQMD". The daily cases, deaths, particulate matter (PM-2.5 µm) and carbon monoxide were documented from the date of the occurrence of the first case of (SARS-CoV-2) in San Francisco, CA, USA, from March 20, 2020 to Sept 16, 2020. RESULTS: The results revealed a significant positive correlation between the environmental pollutants particulate matter (PM2.5 µm) and the number of daily cases (r=0.203, p=0.007), cumulative cases (r=0.567, p<0.001) and cumulative deaths (r=0.562, p<0.001); whereas the PM2.5 µm and daily deaths had no relationship (r=-0.015, p=0.842). In addition, CO was also positively correlated with cumulative cases (r=0.423, p<0.001) and cumulative deaths (r=0.315, p<0.001), however, CO had no correlation with the number of daily cases (r=0.134, p=0.075) and daily deaths (r=0.030, p=0.693). In San Francisco, one micrometer (µg/m3) increase in PM2.5 caused an increase in the daily cases, cumulative cases and cumulative deaths of SARS-COV-2 by 0.5%, 0.9% and 0.6%, respectively. Moreover, with a 1 part per million (ppm) increase in carbon monoxide level, the daily number of cases, cumulative cases and cumulative deaths increased by 5%, 9.3% and 5.3%, respectively. On the other hand, CO and daily deaths had no significant relationship. CONCLUSIONS: The wildfire allied pollutants, particulate matter PM-2.5µm and CO have a positive association with an increased number of SARS-COV-2 daily cases, cumulative cases and cumulative deaths in San Francisco. The metrological, disaster management and health officials must implement the necessary policies and assist in planning to minimize the wildfire incidences, environmental pollution and COVID-19 pandemic both at regional and international levels.


Subject(s)
COVID-19/epidemiology , COVID-19/mortality , Carbon Monoxide/adverse effects , Environmental Pollution/statistics & numerical data , Wildfires/mortality , Wildfires/statistics & numerical data , Atmosphere/chemistry , Databases, Factual/statistics & numerical data , Environmental Pollution/analysis , Female , Humans , Male , Pandemics/statistics & numerical data , Particulate Matter/analysis , SARS-CoV-2 , San Francisco/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL